Falling factorial 的定义问题
文章目录
做具体数学的 2.8 题时,想到 falling/rising factorial 定义中的一个问题。
书中 falling factorial 的标准定义是:
下面假设只考虑整数。
也就是从 x 开始递减相乘,乘 n 个,这也就是 falling factorial 的直观意义。如果 n 是负数,则递增相除,这样可以在运算上做到 well defined。
假设 x > 0,n > x,那么 x(x - 1)(x - 2)…(x - n + 1) 这个乘积必然等于 0,因为递减的过程中一定会遇到 0,即
假设 x < 0,n < x,那么递增除的过程中一定会出现被零除的情况,则其结果应该是没有意义。
我们举个例子,
但是,如果用通用公式来看:
那么,看起来,一般定义负数阶乘的方法,并不能让第一个结果有意义且第二个结果无意义。
所以我觉得 falling factorial 的这个定义可能不是那么 well defined,或许应该规定 x 为非负整数且 x > n。但我不知道这是否与 finite calculus 的概念相悖,看起来 finite calculus 是不应该有这么大局限的。
好友 Yining Wang 最近正好在研究相关问题,向他了解情况后,我可以判定 Knuth 在书中给出的通项确实不好。事实上,除了负整数外,n 是任意复数都是有定义的。
本作品采用知识共享署名-相同方式共享 4.0 国际许可协议进行许可。